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ABSTRACT
In this paper a lossless compression technique for Bayer

pattern images is presented. The common way to save these
images was to colour reconstruct them and then code the full
resolution images using one of the lossless or lossy methods.
This solution is useful to show the captured images at once,
but it is not convenient for efficient source coding. In fact,
the resulting full colour image is three times greater than the
Bayer pattern image and the compression algorithms are not
able to remove the correlations introduced by the reconstruc-
tion algorithm. However, the Bayer pattern images present
new problems for the coding step. In fact, adjacent pixels
belong to different colour bands mixing up different kinds of
correlations. In this paper we present a lossless compression
procedure based on an optimal vector predictor, where the
Bayer pattern is divided into non-overlapped2× 2 blocks,
each of them predicted as a vector. We show that this solu-
tion is able to exploit the existing correlation giving a good
improvement of the compression ratio with respect to other
lossless compression techniques, e.g., JPEG-LS.

1. INTRODUCTION

Most digital cameras produce colour images using a single
CCD sensor provided by a colour filter array (CFA). In this
way, adjacent pixels capture the light intensity value of dif-
ferent colour bands, and a full colour image is obtained by a
colour interpolation step which reconstructs the missing val-
ues.

The Bayer pattern, presented by Bayer in [1], is the most
popular and used colour filter array (CFA). It uses a rectan-
gular grid for the red and blue bands and a quincunx grid for
the green band, as shown in Fig. 1. The choice of capturing a
number of green pixels twice as high as the red and the blue
bands is justified by the fact that the Human Visual System
(HVS) places more emphasis on the green rather then on the
red and blue components.

The common way to manage the Bayer pattern images
is to colour reconstruct them, applying automatic white bal-
ancing and other colour corrections, and then compress the
resulting images. This workflow is effective for most dig-
ital camera users, but the professional photographers de-
mand for custom post-processing of the captured images. To
achieve this requirement, the professional digital photo cam-
eras allow for saving the raw sensor data without any post-
processing step. This option permits the advanced user to
apply high-complexity high-quality demosaicing algorithms
during a post-processing step. Until now, each captured im-
age has been saved in a RAW format without any compres-
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Figure 1: Bayer pattern used in the paper.

sion step, and only Nikon proposes a visually, but not nu-
merically, lossless coder called NEF (Nikon Electronic For-
mat). This solution satisfies the user requirement, but limits
the number of pictures which could be saved into the flash
memory card of the camera. Besides, if we consider the cost
of this kind of memory, the need of a good lossless compres-
sion technique is gaining importance day by day.

In literature, the first works on this issue were developed
by S. Lee and A. Ortega in [2] and C.C. Koh and S.K. Mitra
in [3]. The first paper proposes that the compression step
is placed before the colour reconstruction algorithm. The
authors propose an image transformation algorithm to reduce
the existing redundancy in a CFA image and then they code
the transformed image using JPEG.

Mitra et al propose new image transformations to be ap-
plied to the Bayer image before the JPEG compression step.
They code the red and blue bands without any transforma-
tion because these bands have a rectangular array suitable
for JPEG. The transformations are applied only on the green
band where a quincunx sampling is used. They propose two
methods: the first uses a diamond filter with a 2-D impulse
response and then the data is separated into odd and even
components independently coded. In the second method the
columns of the quincunx array are collapsed into a compact
array. This operation creates false high frequencies in both
the horizontal and vertical directions. To reduce this effect
the quincunx data has been thought as two interlaced frames
of a scene, so through the process of deinterlacing a smooth
image is obtained.

Unfortunately, these approaches introduce some loss. A
lossless compression algorithm for the color mosaic images
is proposed by N. Zhang and X. Wu in [4]. They use the
lifting integer wavelet to decorrelate the mosaic data both
in spatial and spectral domains. Then the integer transform
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Figure 2: Manhattan distance (MD) of the neighbour pixels
to the current one.

coefficients are coded by a simple context-based Golomb-
Rice coding scheme.

Our approach uses a DPCM mechanism to decorrelate
the mosaic colour images, where the optimal prediction is
estimated using the causal adjacent pixels given by a raster
scan order. However, the Bayer pattern images are not con-
sidered as grayscale images, but as non-overlapped block im-
ages where each block contains two green, one red and one
blue samples. For each prediction step we estimate an image
block (i.e., four image adjacent samples) using the optimal
vectorprediction theory. In this way, our predictor is able
to exploit both the spatial and spectral correlation and uses
them to improve the prediction performance (reducing the
prediction error entropy).

The paper is organized as follows. Section 2 presents
the proposed coding scheme, and its experimental results are
shown in Section 3. In Section 4 we report the conclusion of
this work.

2. PROPOSED ALGORITHMS

In one-dimension them-order one-step linear predictor of a
signalx at timen is given by

x̂(n) =
m

∑
i=1

wix(n− i)

wherex(n− i) are past observations of the signal, andwi are
the prediction coefficients.

The predictor is calledoptimal if the prediction coeffi-
cientswi minimize the energy of the prediction error:

e(n) = x(n)− x̂(n) = x(n)−
m

∑
i=1

wix(n− i).

From the orthogonality principle, this condition is veri-
fied if and only if the prediction error is orthogonal to the
past signal observations.

2.1 Optimal Scalar Prediction (OSP)

For image prediction we must address a two-dimensional
problem. The first issue is to define the set of the neigh-
bour (causal) pixels which define the previous samples of the
optimal predictor.
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Figure 3: Prediction blocks.

Using a raster scan order, one solution to this problem
could be given by the set of pixels having Manhattan distance
smaller than a fixed thresholdTs (see Fig. 2). Letp(x,y) be
the pixel value at position(x,y), then the prediction setPTs

x,y
of this pixel is given by:

P
Ts
x,y =

{

p(x−k,y− j) : (k, j) ∈ Ak, j ∧|k|+ | j| ≤ Ts
}

where

Ak, j = {k∈ Z, j ∈ N0 : (k∈ Z, j > 0)∨ (k > 0, j = 0)} .

Ak, j , N0 andZ are the sets of the previous causal pixel, of
the natural and of the integer numbers, respectively.

The threshold valueTs fixes the predictor order, so if it is
high the prediction setPTs

x,y has an high cardinality, and we
have an high-order predictor. This solution works well if we
predict a natural image where there are smooth changes of
luminance value, but for synthetic images this solution does
not work well because the luminance could change in strange
(and unpredictable) ways. On the other hand, if the threshold
is too low, we obtain a low order predictor which works well
on the edges, but not so well on smooth region.

To predict the pixelp(x,y) we use the previous coded
pixels according to the scan order introduced in Fig. 2.

The optimal prediction coefficientswx,y,k are adaptively
computed solving the linear system

Rx,ywx,y = R0,x,y, (1)

whereRx,y is an estimate of the autocorrelation matrix, and
R0,x,y is a correlation vector. At the end, the predicted pixel
p̂(x,y) is computed according to

p̂(x,y) =
m

∑
k=1

wx,y,k px,y,k (2)

wherepx,y,k ∈ PTs
x,y.

To compute the optimal predictor, the autocorrelation
matrix is needed. We estimate it using the covariance method
taking into account only the actual coded pixels. In this way,
the estimate of the autocorrelation matrix for the pixel at po-
sition (x,y) is given by

Rx,y =
y−1

∑
j=0

L−1

∑
k=0

α |x−k|−|y− j |Ak, j +
x−1

∑
k=0

α |x−k|Ak,y, (3)

and the vectorR0,x,y by

R0,x,y =
y−1

∑
j=0

L−1

∑
k=0

α |x−k|−|y− j |A0,k, j +
x−1

∑
k=0

α |x−k|A0,k,y, (4)



whereL is the width of the image, andα is an empirical
weight introduced to decrease the influence of the farthest
pixels from the current position(x,y).

To build up the matrixAx,y and the vectorA0,x,y we de-
fine the vectorpx,y as

px,y =









px,y,1
px,y,2

...
px,y,m









, (5)

where the componentspx,y,1, . . . , px,y,m belong to the predic-
tion setPTs

x,y, andm is the order of the predictor, i.e., the
cardinality ofPTs

x,y.
Frompx,y, the matrixAx,y and the vectorA0,x,y are com-

puted according to

Ax,y = px,yp
t
x,y

=











p2
x,y,1 px,y,1px,y,2 · · · px,y,1px,y,m

px,y,1px,y,2 p2
x,y,2 · · · px,y,2px,y,m

...
...

. . .
...

px,y,1px,y,m px,y,2px,y,m · · · p2
x,y,m











,

A0,x,y = p(x,y)px,y =









p(x,y)px,y,1
p(x,y)px,y,2

...
p(x,y)px,y,m









,

whereAx,y is a symmetric positive definite matrix, but not a
Toeplitz matrix.

2.2 Optimal Vector Prediction (OVP)

To extend the linear prediction to the vector case we divide
the Bayer pattern image into non-overlapping 2× 2 blocks
considering the pixels belonging to each block as the com-
ponents of a single pixel vector. The resulting block image
has a dimension equal toL/2×H/2 whereL andH are the
width and the height of the original image, respectively (see
Fig 3).

Each block is composed by two green, one red and one
blue pixels. To distinguish the two green pixels we denote
with Gr and Gb the green samples which belong, respec-
tively, to the odd and to the even rows of the Bayer pattern
reported in Fig. 1.

Let p̄b(x,y) be the vector of the block at position(x,y)

p̄b(x,y) =
[

Rx,y Gr,x,y Gb,x,y Bx,y
]

, (6)

where the coordinate(x,y) refers to the block and not to the
pixel position.

To predict this vector we use the causal blocks having
Manhattan distance smaller or equal than a fixed threshold
Tv. Accordingly, the prediction set is given by

P̄
Tv
x,y =

{

p̄b(x−k,y− j) : (k, j) ∈ Ak, j ∧|k|+ | j| ≤ T
}

whereAk, j is the set of the causal blocks in raster scan order.
In this paper, we consider a single thresholdTv = 2 hav-

ing P̄
2
x,y as prediction sets with a block cardinality equal to

six.

To predict the pixel vector ¯p(x,y) we use the previous
coded pixel vectors according to the scan order introduced in
Fig. 2.

To estimate the autocorrelation matrix we write the vec-
tor of the causal block as

px,y =
[

p̄bx,y,1 p̄bx,y,2 · · · p̄bx,y,m

]t
, (7)

wherem is the cardinality of the prediction set. Frompx,y the
two matricesAx,y andA0,x,y are computed according to

Ax,y = px,yp
t
x,y (8)

=











Āx,y,1,1 Āx,y,1,2 · · · Āx,y,1,m
Āx,y,2,1 Āx,y,2,2 · · · Āx,y,2,m

...
...

. . .
...

Āx,y,m,1 Āx,y,m,2 · · · Āx,y,m,m











,

A0,x,y = [p̄b(x,y)px,y]
t (9)

= [ Rx,ypx,y Gr,x,ypx,y Gb,x,ypx,y Bx,ypx,y ] ,

where Ax,y is a block symmetric matrix, but not block
Toeplitz. Each blockĀx,y,i, j represents the existing spa-
tial and spectral correlation between the two pixel vectors
p̄b(x,y, i) and ¯pb(x,y, j) which belong to the prediction set.

The estimate of the autocorrelation matrixRx,y and of
matrixR0,x,y is made as in (3) and (4), respectively. In opti-
mal vector theory, the prediction block coefficientswx,y,k are
4× 4 matrices which are adaptively computed solving the
linear systems

Rx,yWx,y = R0,x,y, (10)

where

Wx,y =









wx,y,1
wx,y,2

...
wx,y,m









,

and the predicted pixel vector̄̂pb(x,y) is computed according
to

ˆ̄p(x,y) =
m

∑
k=1

wx,y,k p̄bx,y,k. (11)

To summarize, for each prediction the following steps
have to be performed:
1. update the vectorpx,y (7), and the two matricesAx,y (??)

andA0,x,y (9);
2. estimate the autocorrelation matrixRx,y (3), and the cor-

relation matrixR0,x,y (4);
3. invert the autocorrelation matrixRx,y to obtain the pre-

diction coefficient vector

Wx,y = (Rx,y)
−1

R0,x,y; (12)

4. calculate the predicted pixel vectorˆ̄pb(x,y) by (11).

To reduce the complexity of the second step we use the ma-
trix update method introduced by [5], where the high compu-
tational cost problem is turned to a high memory requirement
problem. To calculate the inverse matrix ofRx,y we use the
Cholesky factorization obtaining a computational cost order
equal toO((4m)3/6).
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Figure 4: JPEG-LS applied on the three colour components
obtained by a Bayer pattern splitting.

The pixel vector value ¯px,y is then coded through an arith-
metic binary coder in bit-plane mode starting from the MSB
down to the LSB, and the zero’s probability is computed
modelling the prediction error

ex,y = p̄x,y− ˆ̄px,y

by a modified Student’s distribution centered on the predicted
pixel value [5].

Since each frame is extended to a constant value outside
the image boundaries, the decoder can replicate the coder
operations without requiring that the predictor coefficients
are sent as side-information.

3. RESULTS

We tested our algorithm using the reference Kodak set im-
ages, and the three test images calledWoman, Bike and
Monarch. These images have a 24-bit colour representation,
and were sampled according to the Bayer pattern shown in
Fig. 1.

We compare our algorithm with respect to the standard
lossless coder JPEG-LS presented in [6] and implemented
by HP Laboratories1. We tested JPEG-LS on Bayer pattern
images in two ways:
1. directly applying JPEG-LS to the Bayer pattern images;
2. applying JPEG-LS to the three colour components ob-

tained splitting the Bayer pattern images, as show in
Fig. 4.
From the results reported in Table 1 we can conclude

that applying the JPEG-LS coder directly to the Bayer pat-
tern images is not a good solution. In fact, JPEG-LS is pro-
vided with a very simple but effective predictor called MED
(Median Edge Detector). This predictor checks for the pres-
ence of vertical or horizontal edges predicting along them
when they occur, otherwise it estimates the current pixel as
the mean value of the adjacent pixels. In the Bayer pattern
images (BPI) adjacent pixels always present abrupt intensity
changes due to the fact that they belong to different colour
components. For this reason, the MED predictor is not able
to detect edges, becoming a very simple and ineffective mo-
bile average filter.

To obtain the results reported in the second column of
Table 1 we split the Bayer pattern images into three differ-
ent images representing the three colour components (see
Fig. 4). In this way, we obtain a compression gain, with re-
spect to the first solution, roughly equal to 0.7 bit per pixel.
The same gain (refer to the third column of Table 1) is ob-
tained applying the lossless mode of JPEG2000 directly to

1http://www.hpl.hp.com/research/infotheory/loco/

the Bayer pattern images. As said in [4], this result is due to
the reversible 5-3 integer discrete wavelet transform which
de-correlates the mosaic data both in the spatial and spectral
domains.

For the optimal scalar predictor we used two different
thresholdsTs = {2,3} and the corresponding prediction sets

P
{2,3}
x,y have cardinality equal to 6 and 12, respectively. On

the other hand, for the optimal vector predictor we fixed the
threshold equal to 2 (Tv = 2) obtaining a prediction set̄P2

x,y
having a block cardinality equal to 6 where each block con-
sists of four pixels. The thresholds for the OSP algorithm
are selected considering that withTs = 2 the scalar and the
vectorial predictor have the same threshold value, and with
Ts = 3 the two coders have the same complexity.

The OVP coder works better than the OSP coders (Ts = 2
andTs = 3) because it organizes the pixels into a well-defined
structure where both the spatial and the spectral correlations
are exploited. On the other hand, in the OSP coders, the
raster scan over a Bayer pattern image implies a repetitive
exchange between the position of the spectral and the spatial
correlation inside the prediction vectorpx,y and then inside
the estimate of the autocorrelation matrix used to calculate
the prediction weights. For this reason, the structure of the
OVP coder leads to higher compression ratios. However, it
is worth to note that the OSP coders applied to the Bayer
pattern images achieve better results with respect to appling
independently the same algorithms to the Bayer splitted im-
ages. This results lead us to conclude that also the OSP
coders exploits both spectral and spatial correlations, but not
as efficiently as the OVP coder.

Finally, we compare the proposed optimal vector predic-
tion algorithm with respect to other lossless coders presented
in literature, namely: JPEG-LS independently applied on the
three colour components obtained splitting the Bayer data,
JPEG2000 applied on the Bayer pattern image, and the coder
presented by Zhang and Wu in [4].

The performance improvement of the proposed algorithm
is about 0.4 bpp with respect to the standard lossless coder
JPEG-LS, and 0.2 bpp with respect to the Zhang and Wu al-
gorithm. However, the complexity of the proposed algorithm
is too high to allow for a real-time implementation. This high
computational cost is due to two main reasons: the first is
that we have to invert a 24×24 autocorrelation matrixRx,y
for each block prediction; the second is due to the estimate of
the zero probability by numerical integration of the modified
Student distribution.

4. CONCLUSION

In this paper we propose a new lossless compression algo-
rithm based upon the optimal vector prediction theory. The
Bayer pattern is divided into 2× 2 non-overlapping blocks
containing two green, one red and one blue pixels. Each
block is then predicted exploiting the spatial and the spec-
tral correlations existing between pixels which belong to the
same block and to the adjacent causal blocks. The obtained
results show that the proposed method is effective, but its
complexity is too high to allow for a real-time on-board
hardware implementation, so the captured images have to be
saved in RAW format on the flash memory of the camera and
then compressed in a post-processing step.



JPEG-LS Optimal Spatial Predictor Optimal

Image Bayer Pattern RGB JPEG2000 Zhang and Wu Ts = 2 Ts = 3 Vector

Image (BPI) Splitted [7] [4] BPI RGB BPI RGB Predictor

Woman 5.59 5.16 4.94 4.88 4.76 4.96 4.71 4.92 4.65
Bike 5.79 4.99 5.05 4.91 4.72 4.98 4.64 4.89 4.60
Monarch 7.21 4.45 4.89 4.38 4.39 4.39 4.25 4.34 4.11
KD01 6.39 5.97 5.81 5.65 5.70 5.90 5.55 5.87 5.51
KD06 5.86 5.15 5.21 5.03 4.98 5.12 4.83 5.10 4.67
KD08 6.29 6.19 5.90 5.73 5.63 6.05 5.49 5.99 5.60
KD13 6.73 6.48 6.37 6.24 6.23 6.35 6.17 6.35 6.07
KD19 5.69 5.12 4.91 4.82 4.77 4.90 4.69 4.87 4.61
KD21 5.47 5.00 5.03 4.87 4.85 4.94 4.79 4.92 4.71

Average 6.11 5.39 5.35 5.17 5.11 5.28 5.01 5.25 4.96

Table 1: Comparison between different Bayer pattern lossless coders.
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